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ABSTRACT
Energy costs are quickly rising in large-scale data centers and are
soon projected to overtake the cost of hardware. As a result, data
center operators have recently started turning into using more
energy-friendly hardware. Despite the growing body of research
in power management techniques, there has been little work to
date on energy efficiency from a data management software per-
spective.

In this paper, we argue that hardware-only approaches are only
part of the solution, and that data management software will be
key in optimizing for energy efficiency. We discuss the problems
arising from growing energy use in data centers and the trends
that point to an increasing set of opportunities for software-level
optimizations. Using two simple experiments, we illustrate the
potential of such optimizations, and, motivated by these exam-
ples, we discuss general approaches for reducing energy waste.
Lastly, we point out existing places within database systems that
are promising for energy-efficiency optimizations and urge the
data management systems community to shift focus from perfor-
mance-oriented research to energy-efficient computing.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems — relational data-
bases; query processing. H.3.4 [Information Storage and
Retrieval]: Systems and Software — performance evaluation
(efficiency and effectiveness).

General Terms
Algorithms, Performance, Design.

Keywords
Data management systems, database systems, energy efficiency,
power management.

1. INTRODUCTION
Growing demands for information processing have lead to a
demand for cheaper, faster, and larger data management systems.
At the same time, an important and growing component of the
total cost of ownership for these systems is power and cooling
[Bar05]. A recent report by the Environmental Protection Agency
shows that data center power consumption in the US doubled
between 2000 and 2006, and will double again in the next five
years [EPA07]. Uncontrolled energy use in data centers also has
negative implications on density, scalability, reliability, and the
environment. These trends are raising awareness across multiple
disciplines to optimize for energy use in data centers.

Recent work in computer architecture and power management has
called for system designs and provisioning of hardware compo-
nents that take power consumption under consideration. The goal
in these approaches is to design systems that will be highly
energy efficient at the peak performance point (maximum utiliza-
tion) and remain energy efficient as load fluctuates or drops. The
notion of energy proportionality [BH07] characterizes exactly
that: servers should use no power when not used and power only
in proportion to delivered performance or system utilization.
Thus, servers would offer constant energy efficiency, i.e., the ratio
of performance to power, at all performance levels.

In this paper, we argue that energy-friendly and energy-propor-
tional hardware is only part of the answer. Software choices can
be particularly effective, especially in database management sys-
tems that permit broad choices due to physical data indepen-
dence and query optimization. We expect the opportunity for
software-level optimizations to be even larger with the recent
trend of increased heterogeneity at all levels, from clusters to
storage hierarchies and CPUs. We demonstrate the efficacy of
software choices in database systems through two simple exam-
ples. In the first example, we experiment with a system which
was configured similarly to an audited TPC-H server and show
that making the right decision in physical design can improve
energy efficiency. The second example uses a relational scan
operator as a basis to demonstrate that optimizing for perfor-
mance is different from optimizing for energy efficiency.

Motivated by these examples, we discuss potential approaches for
reducing energy waste. We identify three such general
approaches, each with an increased level of complexity: (a) adjust
existing system-wide configuration knobs and query optimization
parameters to account for energy costs, (b) consolidate resource
use in both time and space to facilitate powering down unused
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 hardware components, and (c) revisit and redesign data structures,
algorithms, and policies, from a whole-system perspective, to
improve energy efficiency. With these approaches in mind, we
examine several areas of database systems that are ripe for energy
efficiency optimizations. These areas range from physical design
to storage and buffer management, and from query optimization
and query processing to new architectures and special purpose
engines.

Our aim in this paper is to bring awareness to the database sys-
tems community about the important opportunities for research
on energy-efficient data management software. We start our dis-
cussion of the problem by presenting trends and implications of
rising energy use (Section 2), and motivate the potential that data-
base software has for affecting energy efficiency. Section 3 con-
tains our two examples that further highlight the potential for
software-based energy optimizations. In Section 4, we describe
three general approaches for reducing energy waste, and in Sec-
tion 5, we discuss promising areas in data management systems
for improving energy efficiency. We conclude in Section 6.

2. THE NEED FOR ENERGY EFFICIENCY
In this section, we first define and motivate the need for energy
efficiency in data management systems (Sections 2.1 and 2.2),
and then highlight current findings and trends that will shape the
scope of future solutions (Sections 2.3 and 2.4).

2.1 What is Energy Efficiency
Energy is the physical currency used for accomplishing a particu-
lar task, e.g., moving a car, lighting a room, or even performing a
computation. It can take many forms such as electrical, light,
mechanical, nuclear, and so on, and can be converted from one
form to another. For computing systems and data centers, energy
is delivered as electricity. Power is the instantaneous rate of
energy use, or equivalently, energy used for a task is the product
of average power used and the time taken for the task:

The typical units for energy and power are Joules and Watts,
respectively, and 1 Joule = 1 Watt x 1 second.

For computer systems, we roughly define energy efficiency as the
ratio of “computing work” done per unit energy. It is analogous to
the miles per gallon metric for automobiles. This metric varies
from application to application since the notion of work done var-
ies. For example, it might be transactions/Joule for OLTP sys-
tems, and searches/Joule for a search engine. Energy efficiency is
also equivalent to the ratio of performance, measured as the rate
of work done, to power used:

For fixed amount of work, maximizing energy efficiency is the
same as minimizing energy. Thus, unlike performance optimiza-
tion, we can improve energy efficiency by reducing power, time,
or both.

2.2 Energy Cost vs. Data Management Needs
Energy use in data centers is a growing problem and a key con-
cern for data center operators and IT executives. A recent study
by the Environmental Protection Agency (EPA) shows that 60 bil-
lion kWh, or 1.5% of the total US energy use in 2006, was used
to power data centers, and this use is expected to nearly double
by 2010 [EPA07]. Koomey also observes a similar trend and esti-
mates $2.7 billion was spent in the US and $7.2 billion was spent
worldwide to power and cool servers in 2005 [Koo07]. Moreover,
studies show that every 1W used to power servers requires an
additional 0.5W to 1W of power for cooling equipment
[PBS+03]. Although energy costs and breakdowns vary depend-
ing upon the installation, analysts predict that energy costs will
eventually outstrip the cost of hardware [Bar05]. Data center
operators will, therefore, need to adjust their pricing structure
accordingly to reflect these rising energy costs.

Besides the cost of electricity, energy use by computing equip-
ment has implications on data center density, reliability, and the
environment. Racks in data centers are provisioned to deliver a
certain capacity in order to properly power and cool the servers.
As power consumed by servers increases, many racks end up
going empty. Even when racks deliver enough power, often cool-
ing is the limitation, since undercooled equipment exhibits higher
failure rates. Thus, energy-use limits achievable data-center level
scalability. Finally, energy use in data centers is starting to prompt
environmental concerns of pollution and excessive load placed on
local utilities [PR06]. As a result of these trends, governmental
agencies (e.g., EPA, US Congress, Intelligent Energy Europe,
TopRunner) are actively seeking to regulate enterprise power.
Recently, a new industrial consortium, GreenGrid, has been
formed to address energy efficiency in data centers.

At the same time, the demand for cheaper, faster, and larger data
management systems continues to grow. Some systems in data
centers support traditional data management tasks like transac-
tion processing and business intelligence. The business intelli-
gence market is a multi-billion dollar market and still seeing
double-digit growth rates [VMW+08]. With the growth of the
internet sector, data centers are also running non-traditional data
management workloads such as search, multimedia storage and
delivery, web analytics, and more recently, cloud computing. To
accommodate their rapidly growing datasets and workload, inter-
net-sector companies like Google are increasingly concerned with
energy use [Bar05]. For example, such companies are starting to
build data centers close to electric plants in cold-weather climates
[MH06]. Ultimately, however, to tackle the energy problem in
data centers while continuing to fuel the demand for data man-
agement resources, we will need to shift our focus from optimiz-
ing data management systems for pure performance to optimizing
for energy efficiency.

2.3 Initial Reactions to Energy Concerns
To tackle the energy-related concerns, there has been a plethora
of work from the architecture and power management communi-
ties. The previous work spans all levels from chips to data centers
[Ran09]. At the chip level, designers have considered techniques
such as dynamic voltage and frequency scaling (DVFS), clock
routing optimizations, low-power logic, asymmetric multi-cores,
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 and so on. At the platform level, there has been work on reducing
power supply inefficiencies as well as power optimizations for
the memory hierarchy. For example, researchers have suggested
strategies for dynamically turning off DRAM, disk speed control,
and disk spin down [ZCT+05]. More recently, there has been an
emphasis on cluster-level optimizations: shifting workloads and
power budgets by considering power and temperature constraints
across multiple domains and the data center as a whole. Finally,
to complement these compute-based techniques, there have been
improvements in data center cooling. Unfortunately, most of this
past work has been application and database agnostic.

Recent work on energy-efficiency optimizations for data manage-
ment workloads has proposed the JouleSort [RSR+07] and SPEC-
Power benchmarks. These two measure energy efficiency of
entire systems that perform data management tasks. Their work-
loads, however, are quite specialized.

As database system designers, we know that technology inflec-
tion points in the past such as virtual memory, deeping of the
cache hierarchy, fast networks for clustering, and so on have
necessitated a reconsideration in the database domain. Applica-
tion-agnostic techniques for scaling have hardly helped if not
obstructed the performance of database systems.

2.4 The Role of Data Management Software
To date, there has been little work on energy efficiency from a
data management software perspective. One source of the prob-
lem lies with the limited dynamic power range and limited power
knobs that most hardware offers today. Analysis of TPC-C
[PN08], SPEC-Power and external sort [Riv08] systems, show
that most servers offer little power variance from no load to peak
use. Thus, for a particular hardware configuration, performance
optimizations are the only way to effect energy improvements.
Barroso and Holze noticed the same inelasticity in power for
Google’s servers [BH07], and also found that the CPUs on these
servers were mostly between 10-50% utilized. They, therefore,
argued for energy-proportional systems: servers that use no
power when not used and automatically consume power only in
proportion to delivered performance, or in their case, system utili-
zation. Such ideal energy-proportional systems would offer con-
stant energy efficiency at all performance levels rather than the
best energy efficiency only at peak performance. 

Unfortunately, systems or even their components (CPUs, memory,
disks, etc.) are hardly energy proportional. Existing components
offer only limited controls for trading power for performance.
CPUs, for example, offer voltage and frequency scaling, which is
a good first step but far from ideal. Memory and disks, whose
power contribution can dwarf other components in database sys-
tems [PN08], offer almost no power control except for sleep
states. They are either on (and at full performance and power) or
off, and the transitions can be expensive.

These limited choices in power-performance states prevent data
management software from varying power consumption and
thereby improving energy efficiency. However, we expect the
opportunities for software-level optimization to increase for two
reasons. First, there is a push to design components that offer
more control over power-performance tradeoffs. For example, we

believe it is reasonable to expect that a software module will be
able to control which CPU cores in a multicore chip are active at
any time.

Second, there is increasing hardware heterogeneity at all levels.
At the cluster level, data centers already contain a heterogeneous
collection of servers that offer different power-performance
tradeoffs because of the technology refresh cycle. Recent work
has considered using virtual machine migration and turning off
servers to effect energy-proportionality [TWM+08]. Although
promising, this approach ignores the disk subsystem. At the plat-
form level, others have suggested blade system designs with an
increasing number of choices, e.g., a remote memory blade, com-
pute blades with components from embedded systems, flash
blades, and so on [LRC+08]. Finally, at the chip level, processor
manufacturers are starting to release heterogeneous CPUs such as
IBM’s Cell, AMD’s Fusion (CPU/GPGPU), and Intel’s Larrabee
(GPGPU). These trends suggest that software running in data
centers will have many more hardware choices with different
power-performance characteristics.

Database systems in particular are well equipped to harness these
choices due to physical data independence and query optimiza-
tion. Databases can dynamically choose the hardware based on
the workload or consolidate data and processes to effect compo-
nent-level energy proportionality. Moreover, they can improve
energy efficiency even further by choosing among a variety of
query processing algorithms that compute the same result but
exercise hardware components differently. We explore these and
other options for energy-use improvements in the upcoming sec-
tions.

3. EXAMPLE OPPORTUNITIES
In this section, we describe two examples that show that choices
made by database systems can improve energy efficiency inde-
pendently of improving performance. The first is an experiment
that varies the number of disks to affect power consumption for a
decision support workload. Using this coarse knob, the system
shows a point of diminishing returns for energy efficiency; the
most efficient point is not the best performing. The second exam-
ple shows that algorithms designed for energy efficiency do not
necessarily result in the best performance. Although these exam-
ples are simple, they illustrate the tradeoffs that we need to con-
sider when optimizing data management systems for energy
efficiency.

3.1 Example 1: Diminishing Returns
Most database systems running complex workloads can be con-
figured and tuned to show a maximum energy-efficiency point at
less than peak performance. The intuition behind this is simple.
When configuring a system for high performance, additional
instances of any one system component, after a certain point, pro-
vide decreasing incremental performance benefit, but add con-
stant amounts of power into the power budget. For example, the
7th disk provides less incremental performance benefit than the
6th disk, more incremental benefit than the 8th disk, and each
additional disk contributes the same power. Therefore, in config-
uring and tuning a system for energy efficiency, one ought to bal-
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ance system components such that the incremental benefits
among all types outweigh the additional power cost.

We demonstrate this effect by exploring the energy-efficiency
profile of a high-performance database server running a decision
support workload (TPC-H). We found that the most effective
means of varying power use in our system was by repartitioning
our database across fewer disks, since the disk subsystem con-
sumed more than 50% of the total system power.

The experimental setup is as follows. Although our results are not
audited, our system was configured similar to one running an
audited TPC-H benchmark result at 300GB scale factor [HP08].
The system consisted of an HP ProLiant DL785 server tray with
8 Quad-Core AMD Opteron processors, 64GB of memory, and
between 36-204 SCSI drives (15K RPM, 73GB) connected by
SAS to between 2-13 HP StorageWorks MSA70 disk trays. We
ran a commercial database system also configured similar to the
audited system [HP08] and ran on Microsoft Windows Enterprise
Server 2008. We striped the database across all disks in a RAID 5
configuration and used compression to bring the database foot-
print to about 256GB. Processors were run in the C0 state, and,
when idle, the system simply ran the system idle process.

Figure 1 shows the time (performance) and energy efficiency of
the system as we varied the number of disks for the “throughput
test.” The throughput test issues a mixture of TPC-H queries
simultaneously from multiple clients to the system. We see that
66 disks was the point of diminishing returns. The percentage
gain in performance did not outweigh the percentage gain in
power, so energy efficiency started to drop. For this system, the
most efficient point offers a 14% increase in efficiency for a 45%
drop in performance. The point of diminishing returns and effi-
ciency-performance tradeoff will vary with the workload. Some
workloads may be able to use additional resources while others
will underutilize them and therefore waste power. 

This experiment shows that even with a coarse power control,
there is opportunity for improvement. Clearly, the overall benefits
also depend on the costs associated with creating or maintaining
different partitionings of the database. However, as the number of
knobs available and configuration choices that affect power

increase, the larger the role the database software will play in
optimizing the system for energy efficiency.

3.2 Example 2: Algorithm Design
In this example, we show that given energy-proportional compo-
nents, designing algorithms for energy efficiency is not the same
as designing algorithms for performance. We show this by con-
sidering a scan with and without compression over a database on
flash drives.

Consider a table stored on disk and a simple selection query
which scans the entire table and applies a predicate. We draw our
numbers for this example from an implementation of a high-per-
formance column-oriented relational scanner from our previous
work [HLA+06]. In particular, we pick a query that projects five
out of seven attributes of table ORDERS from TPC-H and exam-
ine two different configurations, one where the base table is non-
compressed and one where it is compressed. The hardware con-
figuration includes one CPU and three SSD flash disks, which are
an order of magnitude more energy efficient than regular hard
drives.

We reproduce the CPU and total times in Figure 2. When uncom-
pressed, the query is disk-bound: it takes 10 secs to read all data
and 3.2 secs for the CPU to process it. By overlapping disk with
CPU time, the total time is 10 secs. When compressed, the query
becomes mostly CPU-bound, and takes 5.5 secs to run (out of
which, 5.1s are CPU time). Clearly, for that particular configura-
tion, if one were to run this query by itself, they would prefer the
compressed version of the table, and would observe a speedup of
2x.

With energy efficiency in mind, however, it turns out that the
uncompressed table results into a more energy-efficient (but
slower) query. The CPU has a power consumption of 90 Watts,
while the flash disks together consume only 5 Watts. Therefore,
for the uncompressed table, the total energy consumed is (90W x
3.2s + 5W x 10s) = 338 Joules, whereas for the compressed one
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Figure 1. Time and energy-efficiency vs. number of disks for
TPC-H Throughput Test. The points correspond to 36, 66,
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 is (90W x 5.1s + 5W x 5.5s) 487 Joules (assuming that an idle
CPU does not consume any power, or, simply, assuming that
some other concurrent task is taking up the rest of the CPU
cycles).

This simple example points out just how counter-intuitive opti-
mizing for energy efficiency can be. From a performance point of
view, the compressed table makes sense: it results in trading 1.9
secs of CPU time for 4.5 secs of disk time, and also overlaps
CPU and disk use. However, from an energy efficiency point of
view, the compressed table uses a lot more of the CPU. The CPU
power (90W) is much larger relative to the power of the Flash
drives (5W). Thus, using the additional power to increase perfor-
mance is not worth it from an energy perspective. This example
shows that both power and performance considerations must be
evaluated when designing algorithms for energy efficiency.

4. APPROACHES FOR REDUCING WASTE
The previous section provided a brief motivation of how optimiz-
ing for energy efficiency can differ significantly from optimizing
for performance. The space of possible techniques or optimiza-
tions for reducing energy waste is obviously larger than what
those two examples suggest. In fact, we expect that most
approaches that have been applied to date to improve perfor-
mance, will have a counterpart in the approaches for optimizing
for energy efficiency. We highlight this duality between perfor-
mance and energy optimizations throughout the rest of this sec-
tion.

The first step to deploying an energy-efficient data management
platform is to choose hardware components with good perfor-
mance-per-watt characteristics. This is analogous to choosing
high-performance components (server-grade CPUs, high-RPM
disks etc.) when absolute performance is desired. With that as a
starting point, we discuss three categories of software-based
approaches for reducing wasted energy in data management sys-
tems, presented in order of increased complexity. A more general
list of power optimizations can be found in [Ran09].

4.1 Energy-aware Optimizations
Approach: Use existing system-wide knobs and internal
query optimization parameters to achieve the most
energy-efficient configuration for the underlying hard-
ware. 

All modern commercial database systems offer a multitude of
knobs, from collecting statistics for query optimization to config-
uring input parameters to physical designers, and from selecting
the degree of parallelization to assigning memory to operators or
temporary space. The same way many of those knobs have been
tuned to date to increase performance, we expect DBAs to use
them to improve energy efficiency. The examples in the previous
section demonstrate the necessity in understanding and model-
ling power cost, so that database administrators and developers
can incorporate or apply the model into existing tools.

Choosing the right algorithms and settings for improving energy
efficiency entails different tradeoffs than when optimizing for
performance, as shown in Section 3.2. Compression techniques,
for example, trade off CPU cycles for reduced bandwidth require-

ments (both disk-to-memory and memory-to-CPU). By turning
the focus on energy efficiency, tradeoffs like this one will need to
be re-examined.

We expect that query optimization decisions also have the poten-
tial to significantly affect energy consumption by producing sig-
nificantly different query plans. As an example, consider the
hash-join operator which has been known to outperform nested-
loop join in many occasions, but it relies on using a large chunk
of memory for building and maintaining the hash table. From a
power perspective, these are “expensive” operations and may tip
the balance in favor of nested-loop join in more occasions than
before. To improve energy efficiency, query optimizers will need
power models to estimate energy costs. There has been a lot of
work on modeling power, but simple models may suffice in the
same way simple models for device access times work well in
practice.

In addition to configuring and tuning a system for maximum
energy efficiency in a given hardware configuration, the increased
heterogeneity in hardware resources in large data centers will
force knob settings and query optimization decisions to be made
dynamically, depending on runtime conditions.

4.2 Resource Use Consolidation
Approach: Shift computations and relocate data to con-
solidate resource use both in time and space, to facilitate
powering down individual hardware components.

Whenever system resources are not used or are partially used,
there is an opportunity for saving energy by either allowing other
concurrent tasks to utilize the otherwise idle resource or by allow-
ing the resource to enter a suspended or reduced power mode.
Ideally, this should be automatically handled by the underlying
hardware and/or the operating system. For example, if the disk
subsystem is periodically accessed, it should automatically enter
into a sleep mode during periods with no activity. Such function-
ality is necessary for achieving energy-proportional components.
However, as we pointed out in Section 2, current-technology
components have limited power states and, furthermore, the
switching costs across states can easily exceed energy savings.

While we expect hardware components to improve over time in
their ability to consume power in proportion to their usage, we
believe that software choices and practices will ultimately
improve energy-proportionality at the component level. Hard-
ware components will require a certain minimum-length idle
period to enter in a suspended mode, and the longer that period is
the easier it is to hide the costs of switching between power
states. Software mechanisms can help consolidate resource use by
moving data and computation across resources. In that case, the
energy savings from consolidation should exceed the energy over-
head of such movements.

For consolidating resource use across time, previous work on
energy-efficient prefetching and caching for mobile computing
proposed modifications to the OS to encourage burstiness and
increase the length of idle periods [PS04]. A database storage
manager could also incorporate similar techniques, especially
since certain table scans have highly predictable access patterns.
At a higher level, when considering entire systems or collections
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 of resources, we expect to see workload management policies that
encourage identifiable periods of low and high activity – perhaps
batching requests at the cost of increased latency. 

To date, numerous techniques have successfully targeted idle
periods to improve pure performance of data management sys-
tems. In this case, the goal was to move computation and data to
increase overlap among occupied resources. As an example, asyn-
chronous I/O is a mechanism that falls under this category.
Energy-efficient techniques that aim to consolidate resource use
across time can potentially utilize similar mechanisms.

Further, we could imagine buffer and storage management poli-
cies that move data across memory and disks to consolidate
space-shared resources. This consolidation would enable power-
ing down unused hardware at the expense of data movement. We
could imagine performing these at a coarse granularity, just as
load-balancing techniques move database state to improve perfor-
mance.

4.3 Redesign for Max Energy Efficiency
Approach: Redesign software components to (a) mini-
mize energy use, (b) reduce code bloat, and (c) sacrifice
certain properties (or allow underperform in certain
metrics) to improve energy efficiency.

Certain power-oriented tradeoffs in the usage of various resources
will not be achievable through existing configuration parameters
and thus, we expect certain approaches to energy efficiency to
require significant modifications at the software layer. In general,
redesigning system components to include faster algorithms and
mechanisms improves not only performance but also energy effi-
ciency. However, several algorithms will need to be specifically
redesigned for energy use. Consider, for example, the buffer man-
ager: its whole notion and associated replacement policies are
based on avoiding as much as possible costly (in terms of
latency) accesses to slower storage. With energy savings in mind,
the access costs of memory hierarchy levels are going to be dif-
ferent. Moreover, keeping a page in RAM will require energy,
proportional to the time the page is cached. New caching and
replacement policies will be needed, possibly involving a larger
number of more diverse memory hierarchy levels.

Software engineering practices will also need to be revisited and
rethought. Multiple layers of abstraction in the code structure
along with general-purpose component functionality have led to
increases in programmer productivity but also contributed to sig-
nificant bloat in the code [MS07]. Useful data is typically stored
with significant structural overhead, and simple operations
involve the execution of a disproportional large set of instruc-
tions, creating multiple temporary objects on the way. While from
a performance point of view it may not worth addressing code
bloat, energy efficiency considerations may reverse that.

In recent years, there has been a rising interest in database-like
systems that do not include the full suite of traditional database
features. These new systems were designed around new applica-
tions with a different set of tradeoffs. Sacrificing certain proper-
ties such as consistency, reliability, availability, or even security,
can lead to an interesting set of tradeoffs and therefore to oppor-
tunities for improving performance. We expect this kind of

tradeoffs and reduced-functionality designs to also apply to
energy optimizations.

5. FUTURE DATABASE DIRECTIONS
Having discussed some general software approaches to reduce
energy waste, in this section we point out areas in data manage-
ment systems that are promising for energy-efficiency optimiza-
tions.

5.1 Data Placement and Query Processing
Physical database design. Decisions on how and where data is
stored are expected to have a significant impact on database
energy use since initial studies show that more than half the
power use is concentrated in the disk subsystem [RSR+07,
PN+08]. In addition to re-evaluating all previous tradeoffs of
redundant storage and its cost, the new challenge is to take advan-
tage of more choices of physical locations for storing data and
incorporate those into the design process. For example, with per-
formance in mind, the physical locations for permanently storing
data were restricted to only disks (that are uniformly fast), and,
more recently, to faster, albeit more expensive, solid state drives.
With energy efficiency in mind, we expect to see more choices:
different sets of disk arrays that vary in performance/power char-
acteristics, different types of solid state drives, along with remote
storage, accessible over a network. Furthermore, for read-mostly
workloads, increasing redundancy may improve energy effi-
ciency. Additional capacity on disks does not carry energy costs if
the disk usage remains the same, and, as the example of Section
3.1 hinted, different partitioning schemes may be optimal for dif-
ferent workloads. Lastly, techniques that reduce disk bandwidth
requirements, such as column-oriented storage and compression,
will need to be re-evaluated for their ability to reduce overall
energy use.

Query optimization and processing algorithms. The same way
query optimization and query processing algorithms are crucial to
absolute performance, we expect them to also play a central role
in reducing energy waste. Current query processing algorithms
are based on fundamental assumptions regarding the size of avail-
able memory, the nature and number of accesses they make to
both main memory and secondary storage, and their CPU require-
ments. Optimizing for energy use will first bring changes to the
implementation of the algorithms themselves, but most impor-
tantly it will change the way the query optimizer estimates costs
and chooses a query plan, as we mention in Section 4.1.

5.2 Resource Managers
Query scheduling and memory management. Due to the com-
plexity of database systems and the wide variety of resources
needed by a query over its lifetime (along with the complications
that arise when multiplexing the execution of several queries),
there has been a limited number of query scheduling policies that
work well in practice. The objective in the past has been to
improve query response times (either for individual queries or
groups of queries) and maximize the utilization of available sys-
tem resources. For complex queries, scheduling the various oper-
ators within a query and deciding on resource allocation for each
operator has been crucial for the system’s overall performance.
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 Again, switching objectives, from performance to energy effi-
ciency warrants a thorough re-examination of work done in
scheduling and resource management for database workloads.
Techniques that enable and encourage work sharing across que-
ries will become increasingly attractive.

Buffer manager and storage manager. As we mention is Sec-
tion 4.3, we expect the buffer and storage management policies to
be significantly revised, to reflect energy costs for accessing and
storing data, as well as leverage new energy-efficient levels in the
memory hierarchy.

Logging and recovery. While the actual process of system recov-
ery is not likely to be a candidate for improving energy efficiency
(since it happens rarely enough, that performance and correctness
will still be the focus), a lot of a system’s resources, both in com-
putational power and use of the storage hierarchy, are devoted to
logging: previous work showed that about 15% of the code exe-
cuted in an online transaction processing system is related to log-
ging [HAM+08]. Switching the optimization objectives and
incorporating new technology (e.g., flash memories) will affect
the logging mechanisms. For example, it may make sense to
increase the batching factor (and increase response time) to avoid
frequent commits on stable storage, or it might make sense to
migrate certain data and transactions to operate directly on stable
storage and therefore reduce the amount of logging needed.

5.3 New System Architectures
New implementations. Traditional database systems are packed
with functionality to appease the mid-range of the database mar-
ket. In the past, this feature-driven approach has increased system
complexity (i.e., bloat) and limited performance and scalability.
As a result, we are seeing the development of data management
software specialized for certain domains, e.g., data warehousing,
streaming, transaction processing, application log processing, etc.
Similarly, we expect that software complexity may limit the feasi-
bility of energy optimizations. For example, a database vendor
may prefer not to implement online data repartitioning because it
may affect the usability of numerous external tools, including
those distributed by partners. Further, we expect that different
energy optimizations are applicable in different domains, e.g.,
SSDs are better suited for transactional application rather than
warehousing. As a result, we expect the trend toward specializa-
tion to continue and energy reduction techniques to emerge first
from more narrowly focused implementations.

Many of the recent redesigns for improved performance have
done more than separate out functionality. Some have also sacri-
ficed other metrics such as consistency for improved perfor-
mance. Similarly, we expect optimizations that sacrifice
availability, reliability, or other “-abilities” to further improve
energy use.

Co-design. In redesigning data management software, we believe
co-design with other disciplines will enable energy efficiency
improvements that cannot be attained in isolation. We discuss two
important opportunities for co-design.

First, as in the past, data management considerations have influ-
enced the design of hardware (e.g., CPUs and GPGPUs) for
improved performance and should do so in the energy space. Our

community should influence power-management and hardware
architects to develop technologies that address the energy bottle-
necks found in data management systems. Otherwise, we will be
left optimizing for components that hardly make a difference.
Conversely, we will also need to anticipate and adapt our algo-
rithms to the multitude of technologies architects develop to
address the larger market such as heterogeneous multicores, dif-
ferent types of solid state technologies (Flash, phase-change
RAM, etc.), multi-speed drives, and so on. 

A second opportunity is in the coordination of power manage-
ment performed at the database system level with other indepen-
dent power management controllers at different levels of the
system. For example, consider a hardware controller that changes
the voltage and frequency in parallel with the query optimizer
which is making decisions based on current runtime power states.
If these two do not communicate and coordinate their choices,
they may end up working cross purposes [RRT+08]. The software
needs to ensure there is an efficient handoff from one controller
to another, and ideally, it needs to implement an architecture that
helps communicate information across controllers to reach a
global optima. To achieve this, database designers will need
broad cooperation from people across a variety of disciplines
from computer architecture to operating systems to control theory.

Designing for Total Cost of Ownership. Although the ratios
vary across installations, data center operators recognize manage-
ment, hardware, and energy costs as the three main costs of the
total cost of ownership (TCO). Since energy costs are rising and
hardware costs are dropping relatively, we speculate that there
will eventually be an opportunity in redesign to sacrifice hard-
ware cost for improved energy efficiency.

For example, in configuring a system for maximum energy effi-
ciency, we may end up with an configuration that does not meet
minimum performance criteria. Two potential solutions for
increased performance are to either waste energy and increase
performance with diminishing returns or pay for more hardware
(use more resources in a cluster) and parallelize, keeping the
same energy efficiency. Over time, we expect that the latter solu-
tion will prevail since the energy costs will make up a larger frac-
tion of TCO. In that respect, we speculate that parallelization and
system scalability will continue to be important avenues for main-
taining maximum efficiency.

6. CONCLUSIONS
Energy efficiency is quickly emerging as a critical research topic
across several disciplines. In this paper, our intention was to bring
awareness to the database systems community about the opportu-
nities and challenges of energy-aware database computing. We
argued that static hardware configurations, energy-proportional
hardware, and application-agnostic power management tech-
niques are only part of the answer in controlling and reducing ris-
ing energy costs in large data centers. Data management software
will ultimately play a significant role in optimizing for energy
efficiency. Towards this goal we discussed possible solution
approaches as well as areas in database systems ripe for energy
improvements. Looking ahead, we urge the database systems
community to take up on this challenge and shift focus from per-
formance-oriented research to energy-efficient computing.
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